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Minimal Sandpiles on Hexagonal Lattice
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We study the minimal recurrent configurations of the Abelian sandpile model
on the hexagonal lattice referred to the dynamics of a nonconservative sandpile
model. The one-to-one correspondence between these configurations and the set
of maximally oriented spanning trees on the triangular sublattice is constructed.
We derive the correlation functions in minimal recurrent configurations on a
quasi-one-dimensional 2 x N lattice, compare them with correlations for ordinary
recurrent configurations, and argue for asymptotic equivalence between them.

1. INTRODUCTION

Sandpile cellular automata were proposed by Bak, Tang and Wiesenfeld
(BTW)(1) to explain the ubiquity of 1/f noise and fractal structures.
Numerous works have shown that sandpiles do indeed drive themselves
into a stationary state characterized by self-similarity of spatial fluctua-
tions. However, the original BTW model does hot contain the 1/f spectrum
for temporal fluctuations of the total mass of the sandpile. Instead, it
contains the simple 1/f2 power spectrum(2) irrespective of dimension. Later
on, several non-conservative sandpile models manifesting the 1/f spectrum
have been proposed.(3) A non-conservative model which is much closer to
the BTW formulation was considered by Bourzutschky and Bennett.(4)

The Bourzutschky and Bennett model (BBM) can be defined on an
arbitrary lattice L. Each site v e L is characterized by an integer z,, which
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is the number of particles or the local height of the sandpile. The particles
are added to the system at randomly chosen sites. If zv exceeds the critical
value, it is set to 1 and one particle is transferred to each neighbor of v. The
parallel update is assumed. The BBM displays self-organized criticality and
1/f behavior. Ali(5) considered this model in one dimension and derived
both the properties analytically. Numerical simulations(6) show that the
system under the evolution tends to states with low dissipation. As the set
of recurrent configurations of BBM coincides with that of the Abelian
sandpile model (ASM),(7) the states of low dissipation correspond to
recurrent states of ASM having minimal heights. Thus, very likely, the
subset of minimal recurrent configurations of the conservative ASM gives
a leading contribution to the dynamics of the non-conservative and non-
Abelian BBM.

The minimal recurrent configuration of ASM can be naturally
defined(8) as a collection of heights { z v } , v e L which is allowed in the
critical state but gets forbidden after the change zv -> zv — 1 for any site of
the lattice.

The considerable progress in investigating the steady state of ASM is
attained due to the free-fermionic character of the problem pointed by
Dhar.(9) In particular, a spanning tree representation was obtained for the
set of recurrent configurations(I0) which made it possible to get most of
spatial characteristics of the critical state.(11-13)

In order to examine the statistical properties of the minimal recurrent
configurations (MRC), one needs a similar representation for them. In this
paper, we present a construction that gives the one-to-one correspondence
between MRC and a subset of spanning trees. To this end, in Section 2 we
prove the theorem permitting a different equivalent definition of MRC. In
Section 3, we introduce a notion of "oriented spanning trees" and "maxi-
mally oriented spanning trees" and find the correspondence between MRC
on the hexagonal lattice and maximally oriented spanning trees on the
triangular lattice. Section 4 includes a derivation of correlation functions in
MRC on a quasi-one-dimensional 2xN lattice. We compare correlations
for MRC and ordinary recurrent configurations and argue for asymptotic
equivalence between them.

2. MINIMAL SANDPILES

We consider ASM on the lattice formed by an arbitrary graph G
which consists of N vertices and some set of bonds. In this paper, we use
the basic definition of a graph, assuming, following Harary,(14) that graphs
have no loops and no multiple bonds. A configuration of ASM is a set of
integers (heights) zv associated with each vertex v e G. The perturbation of

782 Priezzhev and Ktitarev



the states of the model is defined by the following procedure. One selects
at random a vertex v and increases its value by 1: zv -» Zv + 1. If zv exceeds
the threshold value Zvc (equal to the number degG(v) of bonds connecting
v to the other vertices of the graph G), it topples, i.e., zv -> zv — zvc and each
nearest neighbor of zv receives 1 particle: z,m ->znn + 1. We introduce an
auxiliary vertex * connected by one bond with all boundary sites to play
the role of a sink of the sandpile.

In a stable configuration zv < zvc for all v e G. All stable configurations
can be divided into two classes: recurrent configurations that occur an
infinite number of times during infinitely long evolution and transient ones
having the zero probability of occurrence in the steady state.

Dhar(9) has proposed a constructive definition of the set of recurrent
configurations. He showed that these configurations can be characterized
by the absence of so-called "forbidden subconfigurations" (FSC) defined as
subsets F satisfying
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To determine if a given configuration contains FSC, Dhar(9) has intro-
duced a recursive procedure called the burning algorithm. This procedure
being applied to each stable configuration leads to the one-to-one corre-
spondence between the set of recurrent configurations of the ASM on a
graph G and the set of spanning trees on the same graph.(10)

Besides zv, each site belonging to a recurrent configuration C can be
characterized by a supplementary parameter giving a range of possible
changes of zv without converting C into a forbidden configuration. Fix
some vertex v of the graph G and consider stable configurations Cm

obtained by all possible substitutions zv = m(m= 1,..., M; M = degG(v)) and
leaving all other zu, ueG, u¥=v of the configuration C unchanged. As in
ref. 12, we call the vertex v of the configuration C to be belonging to the
class sk (or being of type k) if the configurations Ck, Ck + 1,..., CM are
recurrent while C k_ 1 (for k> 1) is forbidden. We say that the height zv.
of the site v is minimal, if zv is equal to the type k of the corresponding
vertex v.

Let us introduce the following

Definition. The recurrent configuration C of the ASM on the
graph G is called minimal if all its heights zv are minimal.

It follows from the definition that a minimal configuration C becomes
forbidden after decreasing any of the values zv,veG.

Let G be a graph and V(G) be the set of its vertices. Suppose that
the set V(G) is a disjoint union of two sets K(G)= F,(G)© F2(G) such



that every bond / of the graph G connects two vertices of different sets
(or different colors): l= {v1, v2}, v1 > e V1(G), v2 e V2(G). Then, the graph G
is called bichromatic.

The minimal configurations of the ASM on a bichromatic graph G
have a specific property. Namely, if a recurrent configuration has minimal
heights at the vertices of one color, it is necessarily minimal at all other
vertices of the graph G. To obtain this result, let us prove the preliminary

Lemma. Let C be a recurrent configuration of the ASM on an
arbitrary graph G. Suppose that for some vertex v the height zv is strictly
less than its critical value: z v<z v c = degG(v). Then, there exists a nearest
neighbor u of v such that the configuration C of heights z v ( C ' ) = zv(C) + 1,
z v ( C ' ) = z v ( C ) — 1, zw(C') = zw(C), w e G, w = v, w^u, is also a recurrent
configuration.

Proof. Let us prove the lemma by contradiction. Let the vertex v
have M neighbors (degG(v) = M), zv = M-K, 1 <K<M- 1 and L of
them denoted by v l , l=1,.. . ,L,1<L<M have zvl>1. Note that L>K.
Consider the set of stable configurations Cl, l= 1,..., L obtained from the
configuration C by transferring one particle to the site v from each vertex
vl,l=1,...,L.

Suppose that every Cl is not recurrent and contains some FSC F(v l) ,
l= 1,..., L. At least K + 1 of these FSC's contain the site v. Otherwise, the
unification

of FSC not containing v, neighboring sites vm, m = L + 1,..., M having
zvm= 1, and the vertex v is the FSC in the initial configuration C.

Without loss of generality, denote the neighbors of v corresponding to
K+ 1 FSC containing v by v1,..., vK + 1 .

Consider the set of FSC F(vk), k= 1,..., K+ 1. Since for any configura-
tion Ckzv(Ck) = zv(C) + 1 \^2 each of F(vk) contains at least one of the sites
vi, i = l,..., K+ 1, i= k. Consequently, the set of vertices vk, k = 1,..., K+ 1
contains a subset of N sites 2^N^K+ 1 (let these sites be v1,..., VN) such
that every vn e F(VJ) for some j^n, 1 < n, j < N.

Now, consider the set F=(J"=l F(vn). For every site vn, l^n^N
zVn<degf(vn) because vn eF(Vj) for some v/, 1 ̂ j^Nj^n. Consequently,
the set F is a FSC in the configuration C. We get a contradiction, so the
lemma is proved.
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Now we can prove the following

Theorem. Let C be a recurrent configuration on a bichromatic
graph G with the set of vertices V(G}= V1(G)© V2(G). Let all the sites
ve V 1 (G) have minimal heights in C. Then, the configuration C is minimal
on the whole graph G.

Proof. Suppose that for some recurrent configuration C all the
heights of the sites of one color are minimal and for some site be V2(G)
of the other color the configuration C obtained from C by decreasing
the height zb by 1, is recurrent. Then, according to Lemma, there exists a
nearest neighbor a e V 1 ( G ) of the site b such that the configuration
C":za(C") = z a ( C ) - 1 , z b ( C " ) = zb(C') + 1=z b (C) is also recurrent. But
this means that the height za of the first color is not minimal. This is a
contradiction and the theorem is proved.

3. MAXIMALLY ORIENTED TREES

In this section we construct a mapping from the set of minimal sand-
pile configurations to the set of spanning trees having a special property.

Consider a recurrent sandpile configuration C on a graph G.
According to the burning algorithm, we can construct the spanning tree on
the graph G corresponding to this configuration. We choose the directed-
ness of the tree edges in such a way that there exists a unique path from
each vertex v to the root * along the directed edges of the tree. We call the
site v1, the predecessor of v2 if the path from u1, to * contains the site v2.
The type of any vertex v of the given sandpile configuration, introduced in
Section 2, may be calculated by means of its tree representation. Namely,
the site v is of type k if the vertex v on the corresponding tree has exactly
k—1 predecessors among its nearest neighbors.(12) Indeed, consider the site
v of the configuration C which belongs to the class sk, k>1. The substitu-
tion of zv = k — 1 converts C into a forbidden configuration C', having the
FSC F which contains the site v and exactly k — 1 nearest neighbors of v.
Let us delete the bonds connecting F to the rest of the lattice except one
of the bonds connecting v and its nearest neighbor not included in F. Also,
we decrease the heights of sites of the lattice having a nearest neighbor
in F. The new configuration C" on the new lattice is burnt by the same
burning procedure as the configuration C, which means that C and C" are
represented by the same trees. Moreover, the sites of F burn only after the
site v is burnt. As we have chosen the directedness of the tree opposite to
the direction of the fire, the vertex v on the spanning tree corresponding to
C has exactly k —1 predecessors among its nearest neighbors.
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If the height zv at the site v with degG(v) = m is of type k, the
configurations Ck, Ck + 1 ,..., Cm obtained from C by the substitutions zv = j,
j = k,...,m are recurrent and correspond to m — k+ 1 spanning trees, which
differ by a position of the directed edge outgoing from v. We can fix some
rule for the correspondence of these height configurations and trees and,
if necessary, change the order of the global correspondence of sandpile
configurations and spanning trees, coming from the burning algorithm,
according to this rule. If the graph G is bichromatic, we can define the
correspondence in every vertex of one color. It is possible, as for any two
vertices of one type the sets of bonds incident to them do not intersect and
the rules may be fixed for these sites independently.

Let us now consider the ASM on a hexagonal lattice. This lattice is a
bichromatic graph, so we shall consider the two colors of vertices as black
and white. We connect all black sites and consider a triangle sublattice
formed by these vertices. Let us introduce the orientation on this sublattice
assuming that the bonds of each triangle embracing a white site are
oriented in the anti-clockwise order.

Consider an arbitrary spanning tree on the oriented triangle lattice
with edges directed to the root. For some sites, directions of the tree edges
incident to them are opposite to the orientation of the lattice bonds. We try
to change each "wrong" tree edge by another one belonging to the same
elementary triangle and directed in accordance with the lattice orientation.
It can be done each time when the new position of the tree edge does not
lead to a closed loop. If for some tree there are no "improvable" edges, we
call this tree a maximally oriented spanning tree.

We will show now that the minimal sandpile configurations on the
hexagonal lattice can be put into the one-to-one correspondence with
maximally oriented spanning trees on the triangle sublattice.

Let us construct the correspondence between the set of recurrent
configurations on the hexagonal lattice and the set of spanning trees on the
same lattice. Consider the subset of minimal recurrent configurations.
According to the theorem, this subset coincides with the set of configura-
tions having minimal heights at the vertices of one color. As we stated
above, we can define the correspondence in such a way that the heights in
the sites of this color are consistent with the direction of edges of their tree
representation. Let us fix the rule of correspondence for these vertices as it
is listed in the second column of Fig. 1. The combinations of tree edges for
heights 2 and 3 are shown without regard to possible rotations by the
angles 2n/3 and 4n/3.

Then, take a spanning tree on the hexagonal lattice corresponding to
some minimal recurrent configuration. For each site of the triangular sub-
lattice, let us define the directed edge of a spanning graph according to the
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Fig. 1. Correspondence between heights of the minimal sandpile configuration (left column),
directed edges of the spanning tree on the hexagonal lattice (central column) and directed
edges of the spanning graph on the triangular sublattice (right column). The latter graph is
actually a tree (see text).

rules defined in the third column of Fig. 1. We connect by a path of these
edges of the elementary triangle each pair of two black vertices connected
by a path on the hexagonal lattice inside this triangle. Due to these rules
each black site will be supplied by the only arrow on the triangular lattice.
A cycle on the triangular sublattice would correspond by construction to
a cycle on the hexagonal lattice. Due to the absence of the latter, the
spanning graph obtained on the triangular lattice will represent a spanning
tree. The direction of all edges of this tree will coincide with the orientation
of the sublattice except the only situation shown on the bottom diagrams
of Fig. 1. In this case, it is impossible to "improve" the edge of the tree
because this will necessarily lead to the appearance of a closed loop. Conse-
quently, the obtained tree on the triangle lattice is a maximally oriented
spanning tree. It is clear that different minimal sandpile configurations
correspond to different trees; so this mapping is a bijection. Thus, we have
proved the following

Theorem. The minimal recurrent configurations on a hexagonal
lattice are in the one-to-one correspondence with the maximally oriented
spanning trees on the triangle sublattice.



4. CORRELATION FUNCTIONS ON 2xN LATTICES

Consider the 2 x N hexagonal lattice with periodic boundary condi-
tions in the vertical direction (Fig. 2a). Due to periodicity, it can be viewed
as the 2xN square lattice with closed boundaries (Fig. 2b). The corre-
sponding triangular oriented lattice (Fig. 2c) can be transformed into the
simple lattice (Fig. 2d) after identification of opposite vertical bonds in the
original hexagonal lattice. Each inclined bond in Fig. 2d corresponds to
two bonds directed from a given point to equivalent points in Fig. 2c.
Assuming the open boundary to be situated on the right end of the chain,
one can construct maximally oriented spanning trees on the resulting
directed triangular lattice.

Fig. 2. (a) The 2xN hexagonal lattice. Two sublattices are marked by black and white
circles. (b) The same lattice with periodic boundary conditions in vertical direction. (c) Con-
struction of the correspoding triangular oriented sublattice. (d) The equivalent lattice. Each
inclined bond corresponds to two equivalent bonds in Fig. 2(c).

788 Priezzhev and Ktitarev



Minimal Sandpiles on Hexagonal Lattice

Fig. 3. Maximally oriented spanning trees on the equivalent lattice. Direction of all the
arrows corresponds to the lattice orientation. The spanning tree edges (bold lines) are directed
to the root situated on the right side of the lattice. The white arrows mark edges directed
opposite to the lattice orientation. The hatched regions should be contracted to the single
inclined bond directed up (a) and down (b).

The obtained trees are zig-zag lines alternating by parallelograms
of an arbitrary length (Fig. 3a, b). One of the horizontal sides of such a
parallelogram is formed by a branch of a tree having the opposite direction
with respect to the lattice orientation. Let z be the statistical weight of a
unit of the horizontal length. The generating function of parallelograms is

789

where the factor 2 is due to duplication of identical bonds and the inclined
bonds themselves are considered as parallelograms of the zero width. If one
contracts each parallelogram to a single inclined bond, one obtains a new
tree having the form of a zig-zag consisting of n inclined bonds. Then, one
can write the generation function of maximally oriented spanning trees as

The total horizontal length of each tree is N. The number of maxi-
mally oriented spanning trees on the 2 x N lattice is given by



Now we can calculate the correlation functions in this model. Consider
a point i occupied by a single particle (zi= 1). The point i divides the
lattice into two parts of the length R and L(R + L = N). The right part
must begin with an inclined bond representing a maximally oriented
spanning tree half of which is compatible with the condition zi = 1. The left
part must end with either a parallelogram or an inclined bond also repre-
senting half of proper configurations. The number of left configurations
ended with a parallelogram is AL — 2A L _ 1 , the number of left configura-
tions ended with an inclined bond is 2 A L _ 1 . Therefore, the probability
Pi(1) that zi=1 is

By using Eq. (4.4), for large R, L, N, we get

Analogously, the correlation function Pij(1, 1) of two points i and j with
zi = 1 and Zj = 1 separated by the distance M can be factorized into three
parts corresponding to segments of the lengths R,M,L(R + M + L = N).
Using the same arguments as for the derivation of P(l), we can write
Pij(1, 1) in the form
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from which we obtain

which gives, after the substitution of Eq. (4.4), for large M

where the interval M between i and j is assumed deeply inside the system.
The height-height correlations for the minimal sandpiles should be

compared with those for the ordinary Abelian sandpiles and the directed
sandpiles. The recurrent configurations of ASM on the 2 x N hexagonal
lattice (Fig. 2a, b) are represented by the spanning trees on this structure



(Fig. 4). The hatched regions correspond to squares having contrawise
oriented bonds on the upper and lower sides. As above, we contract the
connected hatched squares into a single vertical bond characterized by the
generating function:

Fig. 4. A spanning tree on the strip equivalent to the hexagonal lattice 2 x N with periodic
boundary conditions shown in Fig. 2(b). All bonds are directed to the root situated at the
right side. The hatched region should be contracted to the single vertical bond.

822/88/3-4-17
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Then, the generating function of the spanning trees G(z) can be written by
means of the auxiliary generating function S(z) of an interval between
vertical bonds

where

The number of spanning trees AN of the horizontal length N is

The denominator in Eq. (4.12) has the roots A, = 2 + v/3 and A2 = 2 — ^/l
The first of them defines the asymptotics of AN ~ Af and their ratio A2/A1
defines the asymptotics of correlation functions. Therefore, the height-
height correlation function of ASM decays asymptotically as

Finally, we consider the directed ASM on the oriented triangular
lattice (Fig. 2c).

A spanning tree representing the recurrent configuration for the open
boundary situated at the left end of the chain is shown in Fig. 5. The
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Fig. 5. A. spanning tree on the oriented triangular lattice. Orientation of each bond to the
root situated at the left side coincides with the orientation of the lattice.

generating function of oriented spanning trees is quite identical to Eq. (4.2)
except the function g(z)

which starts with the term 2z3 as the minimal distance between kinks is 3.
As a result, one has

The roots of the denominator in Eq. (4.15) are

where

Respectively, the number of oriented spanning trees grows as

and correlations deeply inside the directed sandpile decay with the distance
M as

Comparing Eqs. (4.8), (4.13) and (4.17), we see that

Therefore, the correlation functions of minimal sandpile on the strip are
bounded from above and from below by correlations in directed and



ordinary sandpiles. One can expect that these inequalities remain valid with
broardering of strips. Since both directed and ordinary sandpiles have
the same power law asymptotics 1/r4(11 ) for correlation functions in two
dimensions, we can conclude that correlations in two-dimensional minimal
sandpiles behave also as 1/r4. An answer to the question whether the
minimal sandpiles belong to the class of universality of ASM, including
exponents of avalanche distributions, seems to be a more difficult problem.
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